Noncommutative Geometry
   HOME

TheInfoList



OR:

Noncommutative geometry (NCG) is a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
concerned with a geometric approach to
noncommutative algebra In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
s, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncommutative algebra is an
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
in which the multiplication is not
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
, that is, for which xy does not always equal yx; or more generally an algebraic structure in which one of the principal
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
s is not commutative; one also allows additional structures, e.g.
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
or
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envi ...
, to be possibly carried by the noncommutative algebra of functions. An approach giving deep insight about noncommutative spaces is through
operator algebras In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study ...
(i.e. algebras of bounded linear operators on a Hilbert space). Perhaps one of the typical examples of a noncommutative space is the " noncommutative tori", which played a key role in the early development of this field in 1980s and lead to noncommutative versions of
vector bundles In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every p ...
, connections, curvature, etc.


Motivation

The main motivation is to extend the commutative duality between spaces and functions to the noncommutative setting. In mathematics, ''spaces'', which are geometric in nature, can be related to numerical functions on them. In general, such functions will form a commutative ring. For instance, one may take the ring ''C''(''X'') of
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
-valued functions on a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
''X''. In many cases (''e.g.'', if ''X'' is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
), we can recover ''X'' from ''C''(''X''), and therefore it makes some sense to say that ''X'' has ''commutative topology''. More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the
Banach algebra In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
of functions on the space ( Gelfand–Naimark). In commutative
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
,
algebraic scheme This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. ...
s are locally prime spectra of commutative unital rings ( A. Grothendieck), and every quasi-separated scheme X can be reconstructed up to isomorphism of schemes from the category of quasicoherent sheaves of O_X-modules ( P. Gabriel–A. Rosenberg). For
Grothendieck topologies In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is cal ...
, the cohomological properties of a site are invariants of the corresponding category of sheaves of sets viewed abstractly as a
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ...
(A. Grothendieck). In all these cases, a space is reconstructed from the algebra of functions or its categorified version—some category of sheaves on that space. Functions on a topological space can be multiplied and added pointwise hence they form a commutative algebra; in fact these operations are local in the topology of the base space, hence the functions form a sheaf of commutative rings over the base space. The dream of noncommutative geometry is to generalize this duality to the duality between noncommutative algebras, or sheaves of noncommutative algebras, or sheaf-like noncommutative algebraic or operator-algebraic structures, and geometric entities of certain kinds, and give an interaction between the algebraic and geometric description of those via this duality. Regarding that the commutative rings correspond to usual affine schemes, and commutative
C*-algebras In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous ...
to usual topological spaces, the extension to noncommutative rings and algebras requires non-trivial generalization of
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s as "non-commutative spaces". For this reason there is some talk about non-commutative topology, though the term also has other meanings.


Applications in mathematical physics

Some applications in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
are described in the entries Noncommutative standard model and
Noncommutative quantum field theory In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geom ...
. The sudden rise in interest in noncommutative geometry in physics follows after the speculations of its role in
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's ...
made in 1997.


Motivation from ergodic theory

Some of the theory developed by
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vand ...
to handle noncommutative geometry at a technical level has roots in older attempts, in particular in
ergodic theory Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expres ...
. The proposal of
George Mackey George Whitelaw Mackey (February 1, 1916 – March 15, 2006) was an American mathematician known for his contributions to quantum logic, representation theory, and noncommutative geometry. Career Mackey earned his bachelor of arts at Rice Unive ...
to create a ''virtual subgroup'' theory, with respect to which ergodic
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
s would become homogeneous spaces of an extended kind, has by now been subsumed.


Noncommutative C*-algebras, von Neumann algebras

The (formal) duals of
non-commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
C*-algebras are often now called non-commutative spaces. This is by analogy with the
Gelfand representation In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algeb ...
, which shows that
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
C*-algebras are dual to locally compact
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
s. In general, one can associate to any C*-algebra ''S'' a topological space ''Ŝ''; see
spectrum of a C*-algebra In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra ''A'', denoted ''Â'', is the set of unitary equivalence classes of irreducible *-representations of ''A''. A *-representation π of ''A'' on a Hilbert space ''H'' is irreduc ...
. For the duality between σ-finite measure spaces and commutative
von Neumann algebra In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebra ...
s,
noncommutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
von Neumann algebra In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebra ...
s are called ''non-commutative measure spaces''.


Noncommutative differentiable manifolds

A smooth
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
''M'' is a topological space with a lot of extra structure. From its algebra of continuous functions ''C''(''M'') we only recover ''M'' topologically. The algebraic invariant that recovers the Riemannian structure is a spectral triple. It is constructed from a smooth vector bundle ''E'' over ''M'', e.g. the exterior algebra bundle. The Hilbert space ''L''2(''M'', ''E'') of square integrable sections of ''E'' carries a representation of ''C''(''M)'' by multiplication operators, and we consider an unbounded operator ''D'' in ''L''2(''M'', ''E'') with compact resolvent (e.g. the
signature operator In mathematics, the signature operator is an elliptic differential operator defined on a certain subspace of the space of differential forms on an even-dimensional compact Riemannian manifold, whose analytic index is the same as the topological si ...
), such that the commutators 'D'', ''f''are bounded whenever ''f'' is smooth. A recent deep theorem states that ''M'' as a Riemannian manifold can be recovered from this data. This suggests that one might define a noncommutative Riemannian manifold as a spectral triple (''A'', ''H'', ''D''), consisting of a representation of a C*-algebra ''A'' on a Hilbert space ''H'', together with an unbounded operator ''D'' on ''H'', with compact resolvent, such that 'D'', ''a''is bounded for all ''a'' in some dense subalgebra of ''A''. Research in spectral triples is very active, and many examples of noncommutative manifolds have been constructed.


Noncommutative affine and projective schemes

In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects. There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a theorem of Serre on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition of noncommutative projective geometry by
Michael Artin Michael Artin (; born 28 June 1934) is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.Serre duality In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Al ...
for noncommutative projective schemes of Artin and Zhang. A. L. Rosenberg has created a rather general relative concept of noncommutative quasicompact scheme (over a base category), abstracting Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors. There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra.


Invariants for noncommutative spaces

Some of the motivating questions of the theory are concerned with extending known
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
s to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vand ...
' direction in noncommutative geometry is his discovery of a new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the
cyclic homology In noncommutative geometry and related branches of mathematics, cyclic homology and cyclic cohomology are certain (co)homology theories for associative algebras which generalize the de Rham (co)homology of manifolds. These notions were independen ...
and its relations to the algebraic K-theory (primarily via Connes–Chern character map). The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
and cyclic cohomology. Several generalizations of now-classical
index theorem Index (or its plural form indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on a Halo megastru ...
s allow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical
Chern character In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
.


Examples of noncommutative spaces

* In the
phase space formulation The phase-space formulation of quantum mechanics places the position ''and'' momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position ''or'' momentum representations (see also position and mome ...
of quantum mechanics, the symplectic phase space of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
is deformed into a non-commutative phase space generated by the position and momentum operators. * The noncommutative standard model is a proposed extension of the standard model of particle physics. * The noncommutative torus, deformation of the function algebra of the ordinary torus, can be given the structure of a spectral triple. This class of examples has been studied intensively and still functions as a test case for more complicated situations. * Snyder space * Noncommutative algebras arising from
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of ...
s. * Examples related to
dynamical systems In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a p ...
arising from
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777 ...
, such as the Gauss shift on continued fractions, give rise to noncommutative algebras that appear to have interesting noncommutative geometries.


See also

* Commutativity *
Phase space formulation The phase-space formulation of quantum mechanics places the position ''and'' momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position ''or'' momentum representations (see also position and mome ...
*
Moyal product In mathematics, the Moyal product (after José Enrique Moyal; also called the star product or Weyl–Groenewold product, after Hermann Weyl and Hilbrand J. Groenewold) is an example of a phase-space star product. It is an associative, non-commut ...
* Fuzzy sphere * Noncommutative algebraic geometry * Noncommutative topology


Citations


References

* * * * * * *


Further reading

* *


External links


Introduction to Quantum Geometry
by Micho Đurđevich * * * * * (An easier introduction that is still rather technical)
Noncommutative geometry on arxiv.org
* MathOverflow
Theories of Noncommutative Geometry
* *
Noncommutative geometry and particle physics
{{DEFAULTSORT:Noncommutative Geometry Mathematical quantization Quantum gravity